Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Biol Macromol ; 165(Pt A): 1438-1446, 2020 Dec 15.
Article in English | MEDLINE | ID: covidwho-843655

ABSTRACT

There are several families of cysteine proteinases with different folds - for example the (chymo)trypsin fold family and papain-like fold family - but in both families the hydrolase activity of cysteine proteinases requires a cysteine residue as the catalytic nucleophile. In this work, we have analyzed the topology of the active site regions in 146 three-dimensional structures of proteins belonging to the Papain-like Cysteine Proteinase (PCP) superfamily, which includes papain as a typical representative of this protein superfamily. All analyzed enzymes contain a unique structurally closed conformation - a "PCP-Zone" - which can be divided into two groups, Class A and Class B. Eight structurally conserved amino acids of the PCP-Zone form a common Structural Core. The Structural Core, catalytic nucleophile, catalytic base and residue Xaa - which stabilizes the side-chain conformation of the catalytic base - make up a PCP Structural Catalytic Core (PCP-SCC). The PCP-SCC of Class A and Class B are divided into 5 and 2 types, respectively. Seven variants of the mutual arrangement of the amino-acid side chains of the catalytic triad - nucleophile, base and residue Xaa - within the same fold clearly demonstrate how enzymes with the papain-like fold adapt to the need to perform diverse functions in spite of their limited structural diversity. The roles of both the PCP-Zone of SARS-CoV-2-PLpro described in this study and the NBCZone of SARS-CoV-2-3CLpro presented in our earlier article (Denesyuk AI, Johnson MS, Salo-Ahen OMH, Uversky VN, Denessiouk K. Int J Biol Macromol. 2020;153:399-411) that are in contacts with inhibitors are discussed.


Subject(s)
Catalytic Domain , Papain/chemistry , Papain/metabolism , Biocatalysis , Models, Molecular
2.
J Biomol Struct Dyn ; 39(18): 7322-7334, 2021 11.
Article in English | MEDLINE | ID: covidwho-706408

ABSTRACT

The spread of novel coronavirus strain, Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) causes Coronavirus disease (COVID-19) has now spread worldwide and effecting the entire human race. The viral genetic material is transcripted and replicated by 3 C-like protease, as a result, it is an important drug target for COVID-19. Hydroxychloroquine (HCQ) report promising results against this drug target so, we perform molecular docking followed by MD-simulation studies of HCQ and modelled some ligand (Mod-I and Mod-II) molecules with SARS-CoV-2-main protease which reveals the structural organization of the active site residues and presence of a conserve water-mediated catalytic triad that helps in the recognition of Mod-I/II ligand molecules. The study may be helpful to gain a detailed structural insight on the presence of water-mediated catalytic triad which could be useful for inhibitor modelling. Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 Drug Treatment , Hydroxychloroquine , Humans , Molecular Docking Simulation , Peptide Hydrolases , Protease Inhibitors , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL